【高校数学】微分と積分

/解析学

微分と積分(数学Ⅱ)

導関数

導関数の定義は以下になります。

$$f'(x)=\lim_{h\to0}\frac{f(x+h)-f(x)}{h}$$

これにより導関数の公式は以下になります。

  • $n$ が正の整数のとき、$(x^n)’=nx^{n-1}$
  • $c$ が定数で、$y=c$ ならば、$y’=0$
  • $k,l$ が定数で、$y=kf(x)\pm lg(x)$ ならば、$y’=kf'(x)\pm lg'(x)$

接線の方程式

曲線 $y=f(x)$ 上の点 $(a,f(a))$ における接線の方程式は以下になります。

$$y-f(a)=f'(a)(x-a)$$

関数の極大と極小

  • ある区間で常に、
    $f'(x)\gt0$ ならば、$f(x)$ はその区間で増加
    $f'(x)\lt0$ ならば、$f(x)$ はその区間で減少
  • $f'(a)=0$ となる $x=a$ を境にして、
    $f'(a)$ が正から負に変われば、$f(a)$ は極大値
    $f'(a)$ が負から正に変われば、$f(a)$ は極小値

不定積分

$n$ が正の整数または0のとき、

$$\int x^ndx=\frac{1}{n+1}x^{n+1}+C$$

定積分

$f(x)$ の原始関数の1つを $F(x)$ とすると、

$$\int_a^bf(x)dx=\Big[F(x)\Big]_a^b=F(b)-F(a)$$

$k,l$ を定数とすると、定積分は以下の性質をもちます。

$$\int_a^b\Big(kf(x)\pm lg(x)\Big)dx=k\int_a^bf(x)dx\pm l\int_a^bg(x)dx$$$$\int_a^af(x)dx=0$$$$\int_a^bf(x)dx=-\int_b^af(x)dx$$$$\int_a^bf(x)dx=\int_a^cf(x)dx+\int_c^bf(x)dx$$$$\frac{d}{dx}\int_a^xf(t)dt=f(x)$$

偶関数と奇関数の原点に対称な積分は以下になります。

$$\int_{-a}^ax^{2n}dx=2\int_0^ax^{2n}dx$$$$\int_{-a}^ax^{2n-1}dx=0$$

曲面間の面積

区間 $a\le x\le b$ において、$f(x)\ge g(x)$ であるとき、この2つの曲線に囲まれた面積は、

$$S=\int_a^b\Big(f(x)-g(x)\Big)dx$$

 

数学
解析学、代数学、幾何学、統計分析、数学基礎、高校数学
散策路TOP
古典物理、量子力学、物性論、数学、応用数学、力学、電磁気学、相対論、熱・統計力学、解析学、代数学、幾何学、統計分析、情報

 

タイトルとURLをコピーしました